MVTNG 'FH_E SIMPLE TASK OF A BEHAVIOR-BASED ROBOT
BY GENETIC PROGRAMMING

Boonserm Keawkamnerdpong, Chanchai Chaisukkosol , Orawan Chanpen and Jumpol Polvichai
Department of Computer Engineering
King Mongkut University of Technology Thonburi
91 Suksawad 48, Tung-Kru, Bangkok 10140, Thailand.
Tel. (662) 470-9089 Fax. (662) 872-5050

Abstract: The behavior-based approach has been adopted in
designing the dog-like robot. Five 68HCI1 boards are
assigned to control the movement of the robot. Four boards
perform leg primitive behaviors of each leg and one board
performs robot behaviors as its brain. By combining primitive
behaviors, the robot will manifest complex behaviors such as
walking forward, walking backward, turn around, and avoid
hitting. Finally, the robot will do the job, walking and finding
the way out from the maze, our simple task of this research.
Evolutionary technique, Genetic Programming, is used to
generate robot programs for exploring the exit route by
simulating on the computer. These programs will be executed
in a simulation environment. After finding the successful
simulated robot programs, we use a 4-legged robot to perform
the robot programs to prove that the robot can appreciatively
work in real world By combining behavior-based control
system concept and evolutionary computation concept, the
results of these experiments illustrate that using both of these
concepts can efficiently solve a simple problem.

Key words: Robotics, Behavior-Based Approach, Genelic
Programming and 68HC11 Microcontroller.

1. INTRODUCTION

Behavior-based robotic system is one of the most famous in
robotics field that realizes an intelligent robot to work well in
the real world. Behavior-based approach has been showed the
successive expedient of designing the control system to achieve
this purpose. A number of behavior-based robots demonstrated
the performance of this approach (Arkin, 1998).

However, the design of layered control system is more
difficult when the complexity of the task or the interaction
between the robot and an environment are increased. To solve
this disadvantage, some researches have used the different
ways.

Using evolutionary computation, the robot controllers have
been evolved in the various forms by using the measure of
fitness according to the task and its environments. (Polvichai &
Chongstivatana, 1995, Chongstivatana & Polvichai, 1996 and
Pattana et al., 1998),

Reinforcement learning process (Yamaguchi et al., 1996),
another method, is the process of acting in the real environment
without knowledge on a task based on giving rewards when the
learning task is performed. It can learn even in unknown
environment. However, it requires a lot of trials of the given
task and large computation costs, that bring about the needing a
long time to converge learning result problem. Accordingly,

- most reinforcement learning research made by simulation

where the real environment is simulated in a computer or a
virtual environment.

The approach at intermediate level between coding a
behavior-based system and evolving an overall control system
have been proposed. (Lee et al., 1997) This approach uses the
behavior-based architecture as the control design and evolves
the particular components by using an evolutionary approach.
They also proposed the behavior primitives and behavior
arbitrators.

2. PROBLEM STATEMENT

In this paper, we build the 4-leg, dog-like, robot by using the
concept of behavior-based approach controlling the movement
of the robot. To manifest the efficient of the system. finding the
way out of the simple maze is assigned as the simple specific
task of this robot. In stead of thinking to program the robot by
human, genetic programming process is chosen to find the
programs that can command the robot out of the maze. This
process will be taken in the simulation. In final. the successful
programs generated by GP process will be tested in the real
world.

3. THE ROBOT

3.1 Robot Design

The robot used in this research has a dimension of 23 em. x 30
cm. x 25 cm. and a weight of 1.5 kg.. Its four legs are driven by
twelve FUTABU servo motors. These motors can be set angle
between 0 — 180 degrees by signaling a pulse width modulation
encoding. The robot is equipped with six touch sensors: two
distant sensors are positioned on the front and four bar sensors
are located around its body. The layout of sensors, numbered
from 0 to 5, is showed in figure 1. To control the robot. we
send signals by the host computer via a parallel port. All
commands will be sent 1o a parallel board, which sent signals to
four independent 68 HC 11 broads that control cach leg.

Fig. 1. The Dog-like robot and its sensor arrangement.

Actxn Acton

Fig. 2. The architecture of genetic programming processing and
behavior-based system

3.2 Behavior Design

Behavior-based architecture is a new approach decomposed
into task-achieving modules, also called behaviors. The general
behavior-based system includes a set of behavior primitives
and behavior arbitrators, coordinating them by the arbitrator
used to select the primitive. All behavior components are
autonomous and parallel working like the natural working.

A behavior arbitrator in our control system is treated as a
reactive controller. It has the same structure as the primitives
but it has a litle bit difference. Outputs of a primitive are used
to control the motor, but outputs of an arbitrator are used to
activate a behavior primitive. We assign them as follow:

Primitives forward swing. backward swing, and
stop.
Arbitrators : forward walking, backward walking, left

turning and right turning.

All primitives are downloaded into each 68HCI1 broad
controlled cach leg and arbitrators are assigned at the host
computer during executing robot programs. However, unlike
the subsumption architecture (Brook. 1987). our control system
is not a complicated architecture. It is used as a terminal in
genetic programming process. Figure 2 illustrates our
architecture control systems.

4. GENETIC PROGRAMMING PROCESS

Genetic Programming (Koza 1992) is a searching technique
based on the mechanics of natural selection and natural
genctics. The process of the genetic programming employs an
evolution process to synthesize robot programs that appropriate
with a specified problem. The performance of each program
will be used as an indicator whether it can be selected into the
genetic process for breeding the robot programs to the next
generation. Then. the process continues repeatedly until
reaching the programs that have a high performance.

To realize an intelligence robot that achieves the maze
routing task reliably by genetic programming. the main
evolutionary process of this work is similar to typical
evolutionary approach. Given an environment and a goal
formulated as the fitness function. initial population and
selecting genetic operator are generated at random. By four
genetic operators. reproduction, — crossover, mulation and
permutation, the new generation is generated.

In this work. there are three functions and ten terminals in
Genetic programming process. That is,

Function : IF_NOT, [F_AND. IF_OR

Terminal : SL?, SR?. TS17,TS2?, TS3?, 1547,

FORW, BACK, LEFT, RIGHT

In this research, the system uses the combination logic
system which the output logic is determined by the current
input state at each constantly time step. The program pattern
consists of three or four arguments depend on selective
function being if-CONDITION-then-ACTION-clse-ACTION

IF

SL? SR?
A N\
IF_AND IF_NOT
LEFT T83? TS17
FORW BACK TS2? RIGHT

Fig. 3. The characteristic of our genetic system pattern and
typical example of genetic program. In this figure, every node
can be contained in any of all four-part.

pattern. The function IF_NOT s the three-argument
complement operator that executes the second argument if the
complement of the first argument is true, or otherwise, exccutes
the third argument. The function IF_AND and IF_OR are four-
argument comparative operators that executes the third
argument if the logical result of combination logic between the
first and the second argument is true, or otherwise, executes the
forth argument. The characteristic of this patiern can be
illustrated by figure 3.

It can be feasible that action terminal found in condition
position and sensor conditional terminal found in action
position. In case of deviate position. the system will do the
action if it determines the deviate action terminal by alternately
and do nothing if the deviate sensor conditional terminal is
determined.

In the genetic programming process of this work. there are
five stages in each searching cycle.

Stage 1 : Creation the initial population

First of all process of genetic programming. 100 initial
population is generated at random by combining the functions
and the terminals to form the given genetic pattern. Each initial
genetic program is limited at four layers of repetitive searching.

Stage 2 : Verification of each genetic program

Each genetic program is executed repeatedly until any of
following condition has been qualified.

+ Execution time condition: not over 100 times,

= Dead condition: the robot did the same action over 30
execution time.

* Successful condition: robot found a goal area.

Stage 3 : Evaluation of genetic program

The genetic programming for maze routing task given the
evaluating formula, or fitness function. that is

Fitness=20000 + (isGoal x 200000) - (minDistance x 1000}

- ((-hhasObstacle x 50000) - (iskilled X 100000
- (Time x 1000)

where isGoal is logical variable that indicate the position of
the robot whether the satisfying position or not. minDistance is
the shortest distance between the robot and poal in all hundred
execution times, hasObstacie is logical variable that indicate
the obstacle along the shortest distanee between the robot and
goal at the final exceution time. and iskilled is another logical
variable that denote dead condition ol the robot.

This fitness function is gain function, higher value means
better performance.

Stage 4 : Selection of the good programs

lirst hundred ol the best genetie program evaluated by
fitness function is selected to generate the new generation in
500 population.

Stage 5 : Genetic manipulation

he new generation is generated by using the combination
of four genetic operators as mentioned in different probabilities
as following.

Permutation le%
mmumhm es the ten of best

programs. Other operations generaled randomiy

mw«mmm »

5. EXPERIMENTS

In order to make possible for the robot can solve the problem in
many environments, we select three simple mazes with
different degree of difficulty. The first maze has one path 10
reach the goal. The robot has to walk in the right path. The
second maze is defined two possible paths, the robot has to find
the optimum path, The third maze is created a situation where a
local minimum exists. The distance between start position and
goal position is short, but the robot ¢can not reach to the goal
position directly. We also build the real maze that consisient
with three mazes in simulation as well. (see Figure 4)

Alter genetic programming process by simulation, we get
the optimum robot programs that can reach 1o the goal position
in simulation. Finally, we locate these programs to the real
robot for testing the different between running in real robot and
running in simulated robot,

O

T0) the first maze
i o
Robot at | Croal
start | position
g 1
position

'b) the second maze

|

_

A

O =m |

¢) the third maze

Fig. 4. Three simple mazes that use in experiments and the real
maze

To evaluate a number of effective robot programs in real
situation, an amount of time in learning is not appropriate to be
used. We use the simulated robot instead for avoiding the speed
limit of the real robot. The disadvantage of using the simulation
is no corresponding to the real world due to some factors. We
ry 1o reduce these factors by construct the mapping function
about robot walking. To construct this function, we get the real
data by observing the inclined angle and walking speed. (the
robot is controlied by walking commands such as ‘FORW’ :
simulator move with speed 12 and inclined angle —0.12306
radian)

- !
St 44

Fig. 6. The example of the results in the second maze, success
(up) and failure (down).

Fig. 7. The example of the successful results in the third maze.

6. RESULTS AND DISCUSION

6.1 The simulation process

sho:{f:&-‘ ?:at';'lgl:::: gf 'llll: ac;nieved robots of the first maze are
656 10 fad s:iccesls,sf llgure of maze rather spe_nds more
generating the program w?th p?%m' U OB dlf'ﬁcu][. &
with the condition of a fewa tlo“yhm .]eﬁ' e gl
poeens el s el ucb };sen_sors.‘ The Successful
the right wall as well to brin Mokl fo?low
2 the robot reach the goal position.

spe;;;; ;‘;Ldn IE; s‘sulc‘cessful programs of the second maze, it

ime less than the first maze, because this maze
has two possible paths to reach the goal position. Figure 6
shows thc. example of success and failure. For the second maze,
pattern of the successful programs is somewhat the same way.
AL start, I‘(_)nvard commands and turn right commands let the
robot moving 1o the aperture without touching anything. When
the robot hits the wall, the commands that make robot follow
.lhc wall to the left will reach the robot to the goal position.
This pattern is casy to generate by genetic programming
process. In another path, programs, which make the robot to
turn left and turn right with a few touch sensors. are somewhat
difficult to find by the genetic programming prog¢ess.

For the problem of the third maze, with short time running,
the results have showed no successful robot program that can
reach the goal position by using the same fitness function of the
others. Because the fitness function is designed to give the
good score depended on the distance of the robot and the goal
position. This will let the programs that try to move to the way
reaching the final position die out. In the long run, the
successful programs come out (show in figure 7), but it takes a
lot of time. We have try to use the staged evolution method,
which we use the successful running of the first maze to be the
first generation of the genetic programming process of the third
maze. The outcomes have showed that some programs can
reach to the final position faster than randomly generating of
the first population. However, there are many programs.
successful programs from the first maze, die out. Because the
time limit make these programs unable to reach the goal
position.

6.2 The real running

In the real world. we pick up the successful programs generated
bv the simulation process to test with the real robot. Almost
robots can do the task in the same way that show in the
simulation run. The reason for these successful running in real
world is the successful mapping from running in simulation
and running in real world. We put unpredictable action of our
robot in the simulated run. Corresponding with the
characteristic of the real robot. when program orders ‘FORW’
in simulation. the simulated robot won’t forward in the straight
way but it will add with the inclined angle randomly generated
by simulation program. This uncertain feature makes more
robust of the generated program.

7. CONCLUSION

The consequences of this research show that combination of
behavior-based control system concept and evolutionary
computation concept can efficiently solve a simple problem.
The robot created by the concept of hehavior-based approach
can properly work with the program generated by genetic
programming process. The robot programs are evolved with
behavior primitives and behavior arbitrator, making the robot
works well in real world. Nevertheless, transferring the
learning results by simulation to a real robot in the real

environment probably gains poor performance because of

difference of environment, which is reflected by the errors in
performing the task.

8. FURTHER RESEARCH

With the creating of new sensors, the real robot can solve more
complicated problems. More perception will be increase
performance of the robot to dial with the new situation in the
real environment.

Another is to find the new way 1o let the real robot evolves
its control systems by never using the simulation program.

9. ACKNOWLEDGEMENTS

Boonserm Keawkamnerdpong and Orawan Chanpen are
supported by the National Science and Technology
Development Agency of Thailand (NSTDA). Facilities
provided by Department of Computer Engineering of KMUTT.

10. REFERENCES

Arkin, R. C. (1998). Behavior-Based Robotics. The MIT Press,
0-262-01165-4, U.S.A.

Brooks, R. A. (1987). A hardware retargetable distributed
layered architecture for mobile robot control. Proceedings
IEEE Conf. Robotics and Automation. April, pp. 106-110.
NC.

Chongstitvatana, P. & Polvichai, J. (1996). Learning a Visual
Task by Genetic Programming, Proceedings of IEEE/RS]
International Conference on Intelligent Robots and
Systems, pp. 534-540, 0-7803-3213-X, Japan, 1996

Koza,J.R. (1992). Genetic Programming: On the Programming
of Computers by Means of Natural Selection. The MIT
Press, , Massachusetts U.S.A.

Pattana, S.; Saetang, C. and Polvichai. J. (1998) Learning to
walk of a 4-legged robot by Genetic Programming.
National Conference on Computer Science and
Engineering, Bangkok. 1998.

Polvichai. J. & Chongstitvatana, P. (1996). Visually-Guided
Reaching by Genetic Programming. Proceedings of
ACCV’95 the second Asian Conference on Computer
Vision, pp. 11I-329 - 111-333. December 3-8, Singapore.
1995

Yamaguchi, T.; Masubuchi. M.: Fujihara. K. & Yachida. M.
(1996) . Realtime Reinforcement Learning for a Real Robot
in the Real Environment. Proceedings of 1EEE/RS)
International Conference on Intelligent Robots and
Systems. pp. 1321-1328. 0-7803-3213-X, Japan. 1996

Lee, W Hallam, J. & Lund. 1. H. (1997) Apply Genetic
Programming to Evolve Behavior Primitives and
Arbitrators for Mobile Robots. Proceedings of 1EEE 4th
International Conference on Fvolutionary Computation.
IEELE Press, pp. S01-506, 0-7803-3949-5, 1997

